# Molecular characterization of mesenchymal tumors: promises and challenges

Dr. Raul Perret

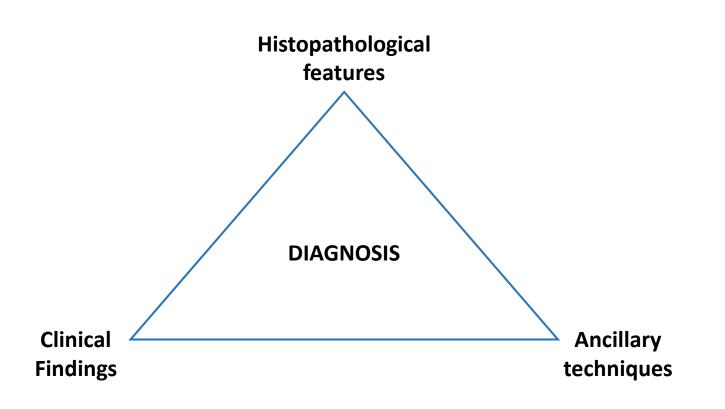
Biopathology Department

Institut Bergonié - Bordeaux, France

🈏 @kells108

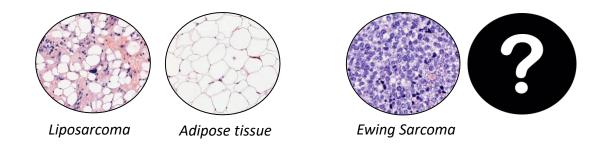





I, Raul Perret have no conflicts of interest to declare.

# Objective of the lecture

To discuss the current value and perspectives of genetics in the diagnosis and management of soft tissue tumors


# Take home message

 Molecular biology techniques are valuable <u>tools</u>, in <u>selected cases</u>, but they <u>don't replace our brains</u>

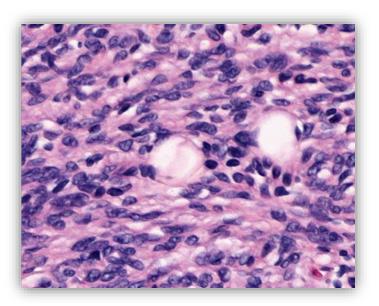


# **Overview of Soft Tissue Neoplasms**

- Sarcomas ≈ 1% adult cancers
- Classification based on histology: **Tumor line of differentiation** (>100 subtypes)



• Classification based on tumour behaviour: **benign**, **intemediate malignancy**, **malignant** 


• Classification based on genetics: **complex vs simple** 

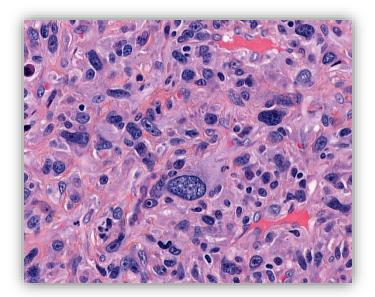
#### **Simple genetics**

No/Minimal chromosomal aberrations

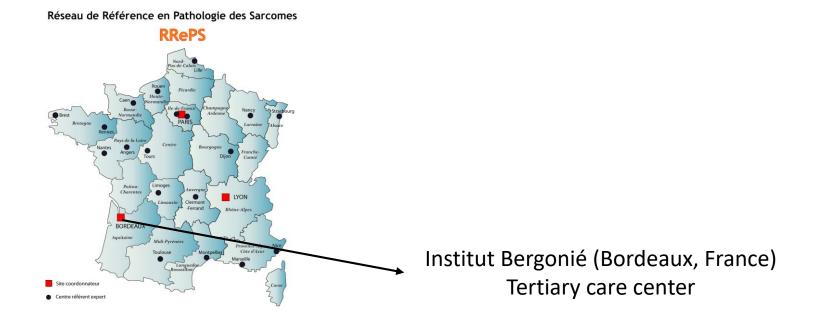
Gene translocations

Point mutations




Dermatofibrosarcoma Protuberans

#### **Complex genetics**


Numerous chromosomal aberrations

Recurrent

Non-recurrent

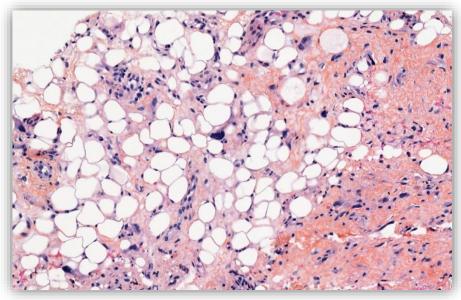


Undifferentiated pleomorphic sarcoma

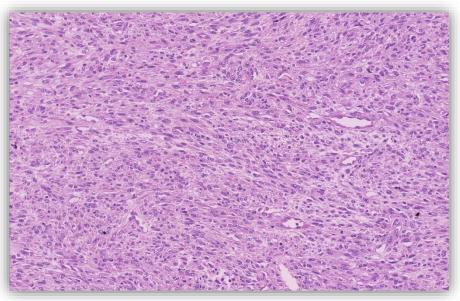


Biopathology Department

Available Molecular techniques

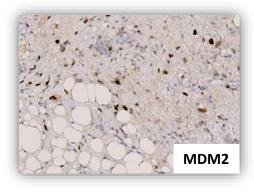

| Array-Comparative Genomic<br>Hybridization (aCGH) | Fluorescence in-situ Hybridization<br>(FISH)                                         | Massive parallel Sequencing<br>(NGS) | Sanger-Sequencing                            | RT-PCR |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|--------|--|--|
| CNVs                                              | <i>MDM2</i> (Liposarcomas well diff./dediff.)<br><i>EWSR1</i> (Ewing sarcoma mainly) | Unclassified or Challenging Tumors   | CTNNB1 (desmoid)<br>MYOD1 (spindle cell RMS) |        |  |  |

### Molecular Genetics in the pathology department


Aims

Increase diagnostic accuracy Identify molecular targets Predict tumor behavior

### Adipocytic tumors with *MDM2* amplification




Well differentiated liposarcoma



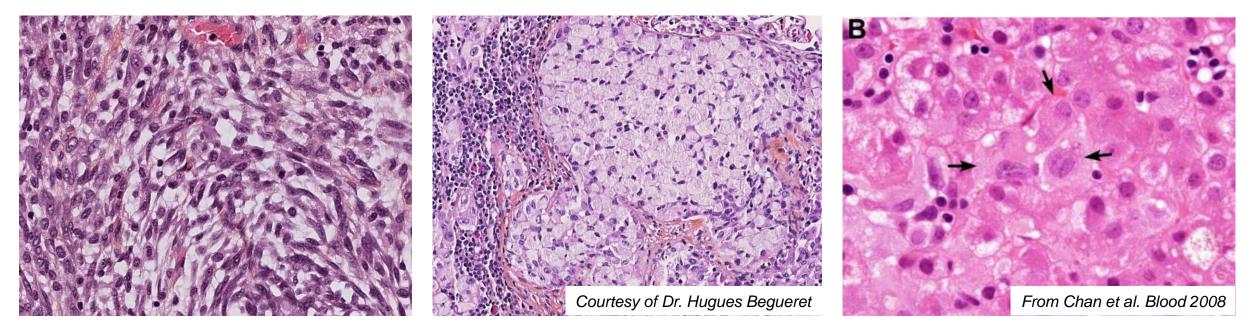
Dedifferentiated liposarcoma

Amplification Chr. 12q13-15 (*MDM2, CDK4, HMGA2...*)





### Indications of FISH testing for *MDM2* amplification


- Recurrent adipocytic tumor
- Deep extremity tumors that are >10 cm in patients >50 years
- Adipocytic tumor with equivocal atypia
- Undifferentiated tumors of the retroperitoneum/pelvis/abdomen
- Core needle biopsies of adipocytic tumors\*

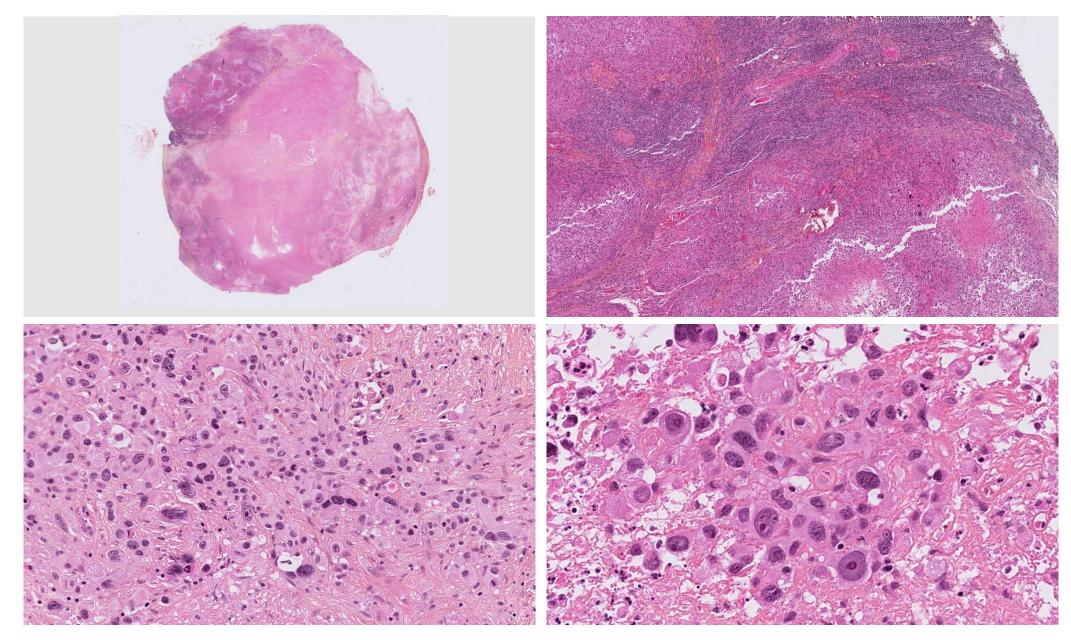
Clay et al. 2015 PMID: 26146760

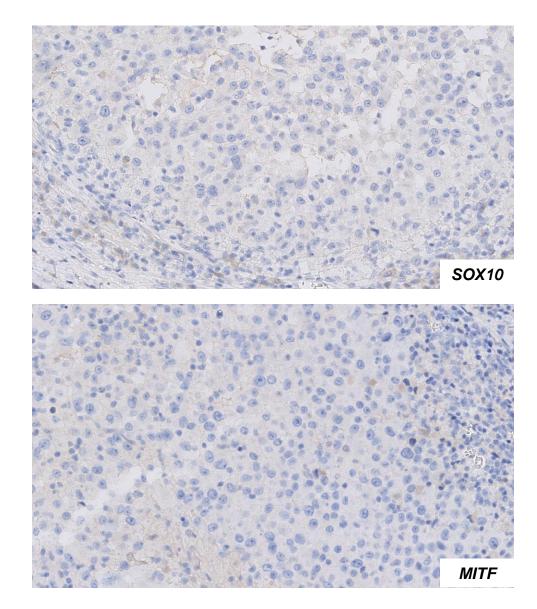
#### Is the presence of *MDM2* amplification exclusive of well diff./Dediff. Liposarcoma?

- Intimal sarcoma
- Low grade osteosarcoma
- Carcinoma
- Gyn Tumors
- Melanoma

#### **EML4-ALK** Fusions in various tumor subtypes

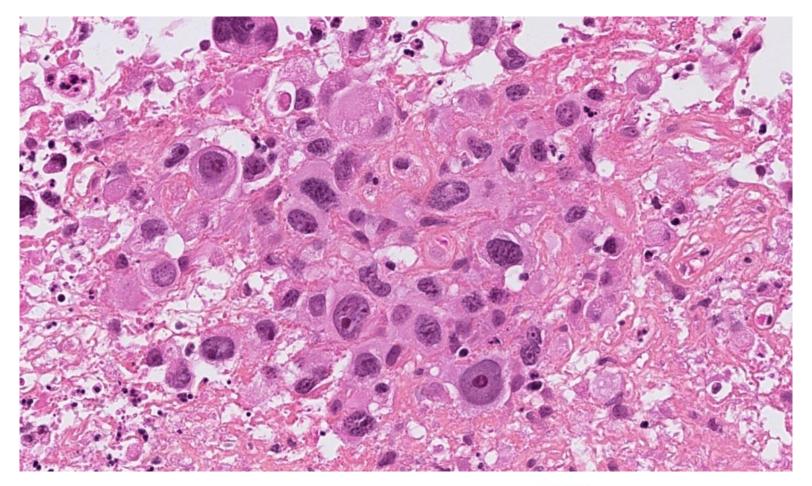



Inflammatory Myofibroblastic Tumor


Lung adenocarcinoma

Non-Langerhans cell histiocytosis

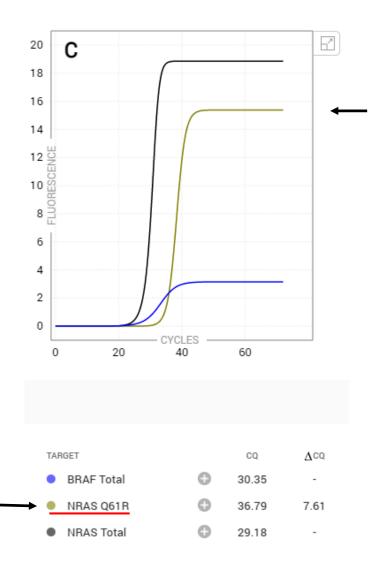
A molecular alteration does not certify a diagnosis, CPC is mandatory


#### Adult male, axillary adenopathy. Metastasis? Lymphoma?

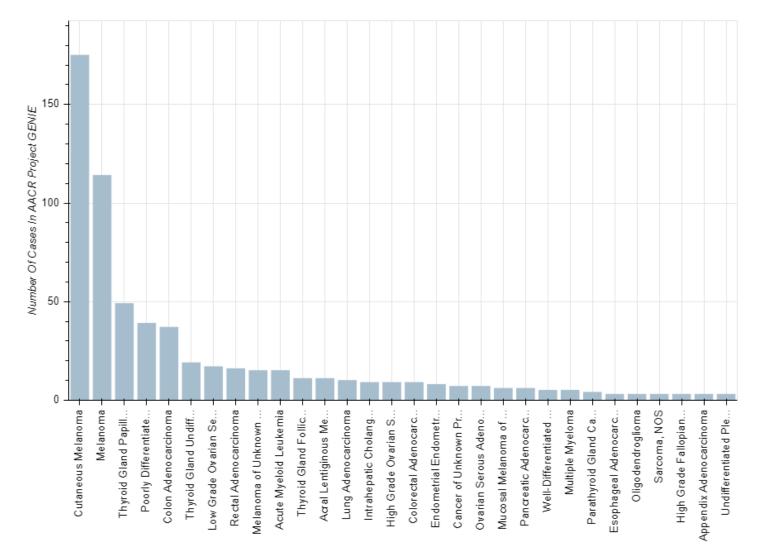




| Other negative markers |              |               |  |  |  |  |  |  |  |
|------------------------|--------------|---------------|--|--|--|--|--|--|--|
| S100                   | Myogenin     | CD68          |  |  |  |  |  |  |  |
| HMB45                  | MDM2         | P40           |  |  |  |  |  |  |  |
| MelanA                 | CD45         | OCT4          |  |  |  |  |  |  |  |
| CD34                   | CD20         | MPO           |  |  |  |  |  |  |  |
| ERG                    | CD3          | Pan-keratin   |  |  |  |  |  |  |  |
| Desmin                 | CD30         | CK7           |  |  |  |  |  |  |  |
| H-Caldesmon            | CD5          | СК20          |  |  |  |  |  |  |  |
| ALK                    | CDX2         | CD138         |  |  |  |  |  |  |  |
| TTF1                   | PAX8         | CD21          |  |  |  |  |  |  |  |
| INSM1                  | Chromogranin | Synaptophisin |  |  |  |  |  |  |  |
| MUC4                   |              |               |  |  |  |  |  |  |  |
|                        |              |               |  |  |  |  |  |  |  |


Ki67 75%




Next Step?



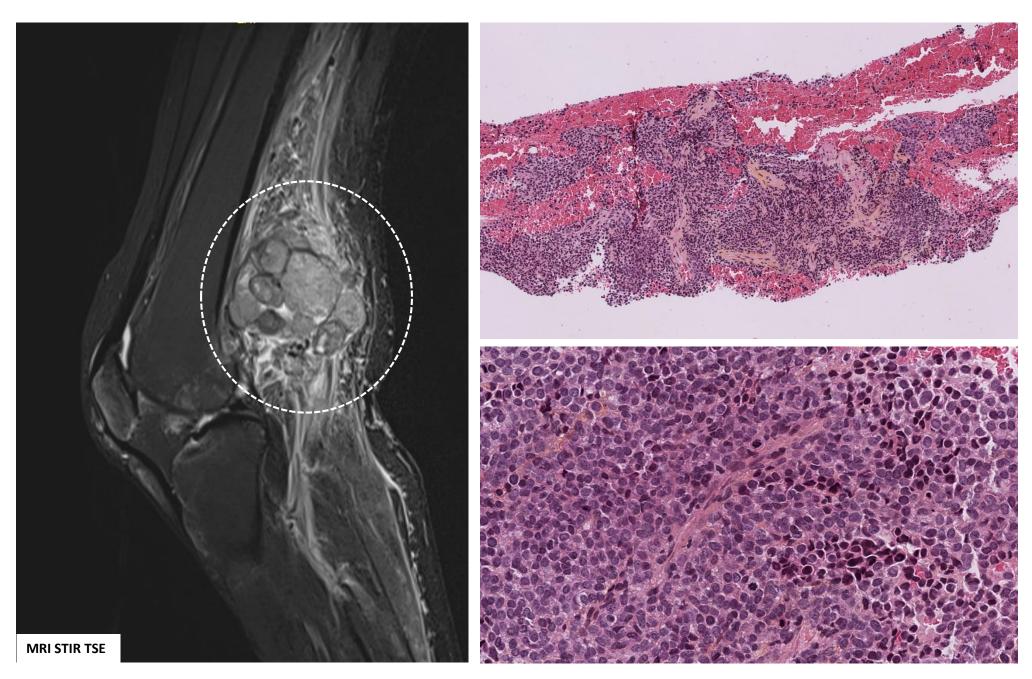
#### Molecular screening for BRAF/NRAS mutations

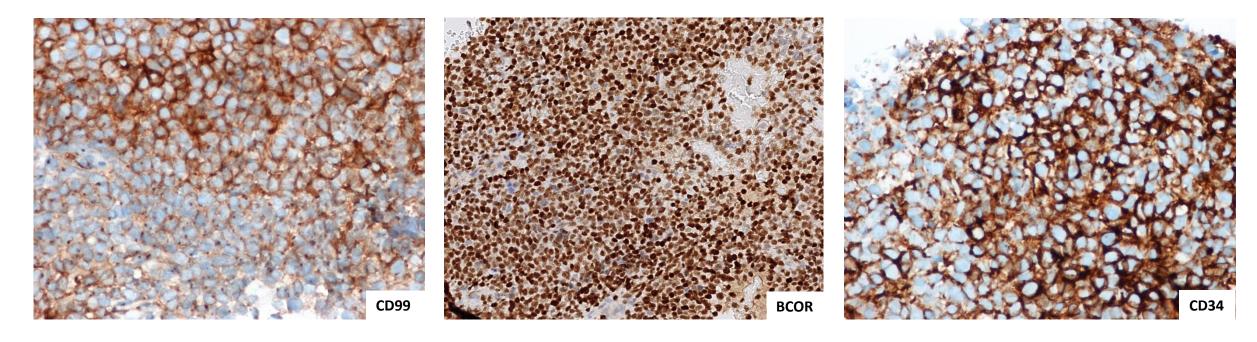


NRAS Q61R is present in 0.77% of AACR GENIE cases, with cutaneous melanoma, melanoma, thyroid gland papillary carcinoma, poorly differentiated thyroid gland carcinoma, and colon adenocarcinoma having the greatest prevalence<sup>4</sup>.



Diagnosis: undifferentiated malignant epithelioid tumor, favor undifferentiated melanoma (probable metastatic location) Dedifferentiated and Undifferentiated Melanomas Report of 35 New Cases With Literature Review and Proposal of Diagnostic Criteria


Abbas Agaimy, MD,\* Robert Stoehr, PhD,\* Annkathrin Hornung, MD,† Judith Popp, MD,† Michael Erdmann, MD,† Lucie Heinzerling, MD,† ‡ and Arndt Hartmann, MD\*


Am J Surg Pathol • Volume 45, Number 2, February 2021

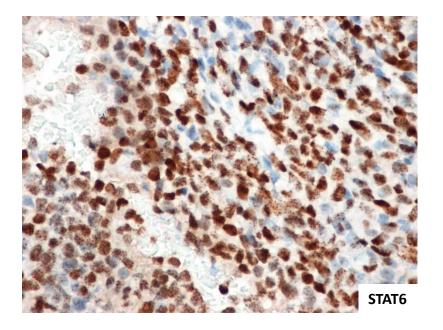
Clues to the diagnosis of dedifferentiated and undifferentiated melanoma :

- Presence of minimal differentiated clone in dedifferentiated melanoma
- Earlier history of melanoma
- Undifferentiated histology that does not fit any defined entity
- Locations at sites that are unusual for undifferentiated/unclassified pleomorphic sarcoma (axilla, inguinal, neck, digestive system, etc.)
- Unusual multifocal disease typical of melanoma spread
- Detection of a melanoma-compatible gene mutation
- Absence of another genuine primary (eg, anaplastic carcinoma) in other organs.

#### Adult male, popliteal fossa






| Other markers                      |            |                 |  |  |  |  |  |  |  |  |
|------------------------------------|------------|-----------------|--|--|--|--|--|--|--|--|
| S100 -                             | Desmin -   | CD3 -           |  |  |  |  |  |  |  |  |
| Pan-keratin +/-                    | WT1 -      | CD20 -          |  |  |  |  |  |  |  |  |
| EMA -                              | ETV4 -     | CD79A -         |  |  |  |  |  |  |  |  |
| ERG -                              | NKX2-2 -   | MPO -           |  |  |  |  |  |  |  |  |
| NUT -                              | SATB2 -    | Synaptophysin - |  |  |  |  |  |  |  |  |
| SMA -                              | SS18-SSX - | Chromogranin -  |  |  |  |  |  |  |  |  |
| INI1 and BRG1 conserved expression |            |                 |  |  |  |  |  |  |  |  |

10 -14 days later...

### Targeted RNA-Sequencing results

| Actions C      | lassification                             | Report | Artifact | Genes 🕇 👘 🗍                 | ss ¥ †i | Reads 🔻 💵 | %Reads 🔻 🗐   | Strong 🔻 👫 | Brkpt <b>T</b>                | Cat 🔻 👘 🗍 | Туре 🝸  | 👫 InFrame 🕇 👫 | то 🔻 🔱 | Rept 🔻 🗐 | Artf 🔻 🗐 | Tier I 🔻 🗐 | Tier II 🔻 🥼 | Tier III 🔻 🥼 | i Tier IV 🔻 🗐 | Germ 🔻 🧏 |
|----------------|-------------------------------------------|--------|----------|-----------------------------|---------|-----------|--------------|------------|-------------------------------|-----------|---------|---------------|--------|----------|----------|------------|-------------|--------------|---------------|----------|
| ◼≈⊨            | ~                                         |        |          | $NAB2 \rightarrow STAT6$    | 151     | 4900      | 45.0         | True       | chr12:57487381,chr12:57493223 | Fusion    |         | True          | 1      | 0        | 0        | 0          | 0           | 0            | 0             | 0        |
| GSP2s          |                                           |        |          |                             |         |           |              |            | Filters                       | 🙂 Reads   | (#/%)   | Stort Sites   |        |          |          |            |             |              |               |          |
| STAT6_ch       | r12_5749317<br>r12_5749282<br>r12_5749263 | 5_24_+ | A1_GSP2  |                             |         | + • •     | ion:6<br>PAN | 82         | © ≅<br>● exon:16              | 4900 /    | 45.0    | 151           |        |          |          |            |             |              |               |          |
|                |                                           |        |          |                             |         |           |              |            |                               | ~         | 📕 STAT6 |               |        |          |          |            |             |              |               |          |
| <b>T • •</b> [ | ~                                         |        |          | $KANSL1 \rightarrow ARL17B$ | 54      | 82        | 10.8         | True       | chr17:44171926,chr17:44430296 | Fusion    |         | False         | 86     | 0        | 5        | 0          | 0           | 0            | 0             | 0        |
| <b>B • •</b> [ | ~                                         |        |          | $NAB2 \rightarrow STAT6$    | 48      | 69        | 0.6          | True       | chr12:57486978,chr12:57493223 | Fusion    |         | True          | 1      | 0        | 0        | 0          | 0           | 0            | 0             | 0        |
|                | ~                                         |        |          | NAB2 → STAT6                | 10      | 10        | 0.1          | True       | chr12:57487357,chr12:57493223 | Fusion    |         | True          |        | 0        | _        | 0          | 0           |              | 0             |          |

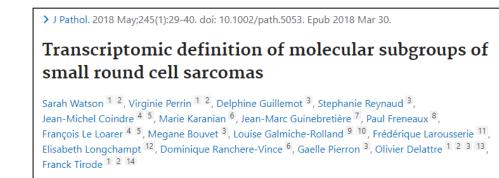
NAB2-STAT6 fusion



#### Diagnosis: Solitary fibrous tumor, high-risk based on Demicco et al. (PMID: 28731041)

Molecular genetics can be very helpful for characterizing diagnostically challenging tumors

# Other potentially useful applications of molecular profiling


• Prediction of tumor aggressiveness :

Nat Med. 2010 Jul;16(7):781-7. doi: 10.1038/nm.2174. Epub 2010 Jun 27.

Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity.

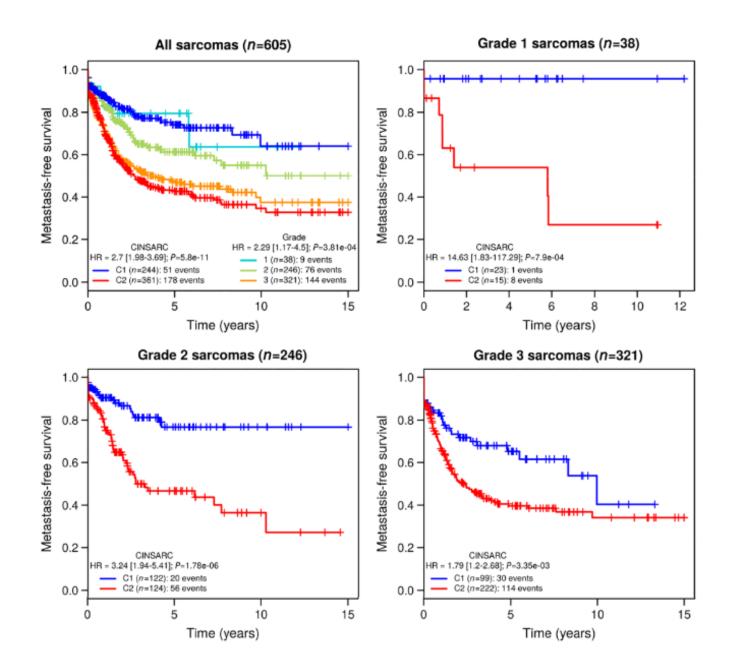
Chibon F<sup>1</sup>, Lagarde P, Salas S, Pérot G, Brouste V, Tirode F, Lucchesi C, de Reynies A, Kauffmann A, Bui B, Terrier P, Bonvalot S, Le Cesne A, Vince-Ranchère D, Blay JY, Collin F, Guillou L, Leroux A, Coindre JM, Aurias A.

• Sarcoma classification based on RNA or DNA-methylome tumor profiling:



> Nat Commun. 2021 Jan 21;12(1):498. doi: 10.1038/s41467-020-20603-4.

#### Sarcoma classification by DNA methylation profiling


Christian Koelsche <sup># 1 2 3</sup>, Daniel Schrimpf <sup># 1 2</sup>, Damian Stichel <sup># 2</sup>, Martin Sill <sup># 4 5</sup>, Felix Sahm <sup>1 2</sup>, David E Reuss <sup>1 2</sup>, Mirjam Blattner <sup>4 6</sup>, Barbara Worst <sup>4 6 7</sup>, Christoph E Heilig <sup>8</sup>, Katja Beck <sup>8 9</sup>, Peter Horak <sup>8</sup>, Simon Kreutzfeldt <sup>8</sup>, Elke Paff <sup>4 6 7</sup>, Sebastian Stark <sup>4 6 7</sup>, Pascal Johann <sup>4 6 7</sup>, Florian Selt <sup>4 7 10</sup>, Jonas Ecker <sup>4 7 10</sup>, Dominik Sturm <sup>4 6 7</sup>, Kristian W Pajtler <sup>4 5 7</sup>, Annekathrin Reinhardt <sup>1 2</sup>, Annika K Wefers <sup>1 2</sup>, Philipp Sievers <sup>1 2</sup>, Azadeh Ebrahimi <sup>2</sup>, Abigail Suwala <sup>1 2</sup>, Francisco Fernández-Klett <sup>1 2</sup>, Belén Casalini <sup>2</sup>, Nat Med. 2010 Jul;16(7):781-7. doi: 10.1038/nm.2174. Epub 2010 Jun 27.

# Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity.

Chibon E<sup>1</sup>, Lagarde P, Salas S, Pérot G, Brouste V, Tirode F, Lucchesi C, de Reynies A, Kauffmann A, Bui B, Terrier P, Bonvalot S, Le Cesne A, Vince-Ranchère D, Blay JY, Collin F, Guillou L, Leroux A, Coindre JM, Aurias A.

- Cancer grading system based on a gene expression signature related to genome complexity
- Stratififaction of tumors in two groups: low risk and high risk of metastasis

CINSARC



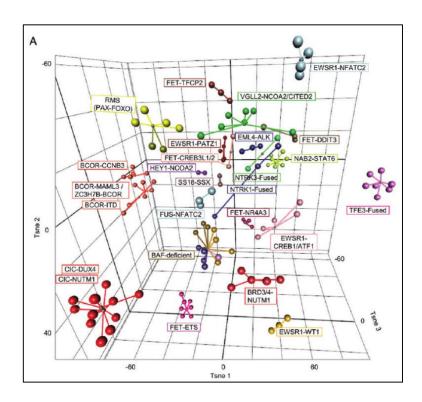
# CINSARC

#### Advantages

- Probably gives additional prognostic information
- Reproducibility
- Dichotomic
- Can be performed in very small samples and after neo-adjuvant treatment

#### Disadvantages

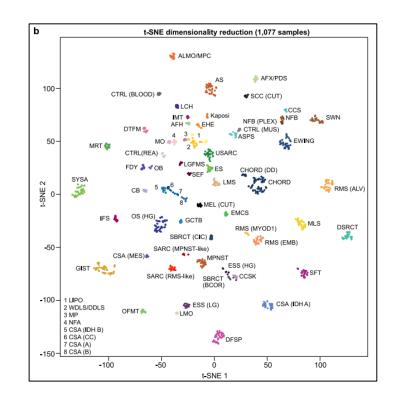
- Expensive
- Not a perfect system
- Not useful for every sarcoma subtype


Utility in clinical practice? Don't know yet...

#### Sarcoma classification based on on RNA or DNA-methylome tumor profiling

> J Pathol. 2018 May;245(1):29-40. doi: 10.1002/path.5053. Epub 2018 Mar 30.

# Transcriptomic definition of molecular subgroups of small round cell sarcomas


Sarah Watson <sup>1 2</sup>, Virginie Perrin <sup>1 2</sup>, Delphine Guillemot <sup>3</sup>, Stephanie Reynaud <sup>3</sup>, Jean-Michel Coindre <sup>4 5</sup>, Marie Karanian <sup>6</sup>, Jean-Marc Guinebretière <sup>7</sup>, Paul Freneaux <sup>8</sup>, François Le Loarer <sup>4 5</sup>, Megane Bouvet <sup>3</sup>, Louise Galmiche-Rolland <sup>9 10</sup>, Frédérique Larousserie <sup>11</sup>, Elisabeth Longchampt <sup>12</sup>, Dominique Ranchere-Vince <sup>6</sup>, Gaelle Pierron <sup>3</sup>, Olivier Delattre <sup>1 2 3 13</sup>, Franck Tirode <sup>1 2 14</sup>



> Nat Commun. 2021 Jan 21;12(1):498. doi: 10.1038/s41467-020-20603-4.

#### Sarcoma classification by DNA methylation profiling

Christian Koelsche <sup># 1 2 3</sup>, Daniel Schrimpf <sup># 1 2</sup>, Damian Stichel <sup># 2</sup>, Martin Sill <sup># 4 5</sup>, Felix Sahm <sup>1 2</sup>, David E Reuss <sup>1 2</sup>, Mirjam Blattner <sup>4 6</sup>, Barbara Worst <sup>4 6 7</sup>, Christoph E Heilig <sup>8</sup>, Katja Beck <sup>8 9</sup>, Peter Horak <sup>8</sup>, Simon Kreutzfeldt <sup>8</sup>, Elke Paff <sup>4 6 7</sup>, Sebastian Stark <sup>4 6 7</sup>, Pascal Johann <sup>4 6 7</sup>, Florian Selt <sup>4 7 10</sup>, Jonas Ecker <sup>4 7 10</sup>, Dominik Sturm <sup>4 6 7</sup>, Kristian W Pajtler <sup>4 5 7</sup>, Annekathrin Reinhardt <sup>1 2</sup>, Annika K Wefers <sup>1 2</sup>, Philipp Sievers <sup>1 2</sup>, Azadeh Ebrahimi <sup>2</sup>, Abigail Suwala <sup>1 2</sup>, Francisco Fernández-Klett <sup>1 2</sup>, Belén Casalini <sup>2</sup>,



Useful techniques to interpreted with caution (CPC)

# Conclusion

- Molecular techniques are valuable <u>tools</u> that can provide additional diagnostic, prognostic and therapeutic data
- <u>Multidisciplinary expertise</u> is needed for its correct implementation
- Molecular genetics <u>don't replace</u> the basic diagnostic process of disease



#### Thank you

Gracias

Merci



Glaciar Perito Moreno – Santa Cruz, Argentina



Le pont de Pierre – Bordeaux, France